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Abstract

We show how to combine heteroskedasticity with sign restrictions and external instru-

ments in order to sharpen identification in structural VARs.

We overcome the limitations of the identification strategies based on sign restrictions

or external instruments, i.e. potentially large identified sets, taking advantage of the in-

formation introduced by heteroskedasticity. Moreover, we overcome the labeling problem

inherent in identification through heteroskedasticity, considering additional identifying in-

formation in the form of sign restrictions or external instruments.

We illustrate the implementation of the procedure for the identification of various shocks

and their effects. Specifically, we consider labour market, oil market, monetary and fiscal

policy shocks.
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1 Introduction

Since the seminal contribution of (Sims, 1980), the empirical analysis of shocks propagation is
most often carried out using Vector Autoregressive (VAR) models. VARs can offer a very good
description of the dynamics of macroeconomic and financial data, and - when coupled with an
appropriate prior - have shown a remarkably good performance in out of sample forecasting. If
one wants to use VARs to answer policy questions, to analyze the effects of policy shocks, or
more generally to give a causal interpretation to such class of models, it becomes necessary to
map the VAR into a system of simultaneous equations.

As is well known in the mcroeconometrics literature, the main difficulty of this task comes
from the fact that such a mapping is not unique, and one has to rely on assumptions derived
from economic theory or on external information to restrict the set of admissible structural
models that share the same reduced form representation. The fundamental problem is that the
data are only informative about the joint dynamics of macroeconomic and financial variables,
but they cannot tell anything about the causal direction in which the underlying structural re-
lations between economic variables manifest. In other words, VAR models are silent about
the contemporaneous causal links in economic variables unless further assumptions are made.
Traditionally, these additional assumptions take the form of zero restrictions on the matrix that
defines the contemporaneous relation across the variables, or the matrix measuring the effect of
a structural shock on a certain variable, either on impact or in the long run.

However, the assumption that a shock does not affect at all certain macroeconomic variable
is too restrictive in many cases. Moreover, the number of zero restrictions required increases
rapidly with the size of the model, making restrictions even harder to choose and to defend.
For this reason researchers have endeavored to devise alternative identification strategies able
to narrow down the set of structural models in which a VAR can be mapped (see Kilian and
Lutkepohl (2017) for a thorough treatment). Two particularly successful strategies are sign
restrictions and the use of external instruments (proxies).

The sign restriction approach, formulated by Faust (1998), Canova and De Nicolò (2002),
and Uligh (2005), is based on the conjecture that the effect of a shock on a given variable, at
some horizon, has a pre-specified sign. More recently, this idea has been revisited by Baumeister
and Hamilton (2015), who impose sign restrictions on the structural contemporaneous relation-
ships between variables on the basis of widely accepted theoretic postulates. The remarkable
merit of this class of identification strategies is that it replaces the heroic assumptions on which
zero restrictions are based with arguably milder conjectures about the sign of macroeconomic
relations. The price for being able to impose these milder conditions, however, is potentially
high: Sign restrictions provide set identification, as opposed to point identification. This means
that, contrary to what is usually achieved imposing zeros restrictions, the resulting set of admis-
sible structural models associated with the reduced form VAR is not singleton, and inference
must be drawn on the basis of the whole set.
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The external instruments approach, pioneered by Stock (2008), Stock and Watson (2012)
and Mertens and Ravn (2013), on the other hand, exploits the availability of variables that are
believed to be correlated with some structural shocks of interest, but uncorrelated with all the
other shocks. Also this approach allows to avoid the imposition of eccessively strong restrictions
on the model and is being widely and succesfully implemented. However, also this strategy can
(and does) in some cases run into problems. In particular, when more than one proxy variable
is available for more than one shock, also this approach can only yield set identification, and
some researchers in some instances had to complement this identification strategy with the
reintroduction of some zero restrictions (e.g. Mertens and Ravn (2013), Lakdawala (2019)).

Parallel to these two approaches (which are used widely), a separate strand of the recent
literature has pointed towards exploiting heteroskedasticity for identification. Notable exam-
ples are Sentana and Fiorentini (2001), Rigobon (2003), Rigobon and Sack (2004) and Lanne
et al. (2010), who show that, if changes in the variances of structural shocks are heterogeneous
enough, reduced form information is sufficient to pin down the parameters of the structural
model. Lewis (2018a, 2018b) extends these ideas to more general and unknown variance pro-
cesses, showing in a non-parametric setup that the conditions required for identification are
generally mild, and that identification can be achieved even in presence of misspecification of
the variance process. The important limitation that has prevented identification through het-
eroskedasticity from being widely used by empirical researchers is the absence of labeling of
the identified shocks. In fact, the presence of heteroskedasticity allows the econometrician to
determine uniquely the structural shocks that drive economic fluctuations, but it does not convey
information about what is the nature of the identified innovations; one can only attach a label to
shocks based on the effects it produces on the variables of the system, as done, for instance, by
Brunnermeier et al. (2021).

In this paper we argue that the identifying information embedded in heteroskedasticity
can be used to sharpen the identification schemes based on sign restrictions and external in-
struments. We show how heteroskedasticity can be routinely and effectively used to reduce
the identified set of VARs identified via sign-restrictions and external-instruments approaches.
Similarly, we show that the information contained in sign-restrictions and external-insturments
schemes can help overcoming the key issue inherent in identification through heteroskedastic-
ity, i.e. the labeling problem. In summary, we support a view that researchers should consider
blending together these alternative identification strategies as the blend contains more idenfify-
ing information than the parts.

We illustrate the convenience of this blended approach by revisiting empirical results pre-
sented in seminal papers based on either sign restrictions or proxy variables. In particular,
we reconsider the applications in Baumeister and Hamilton (2015, 2018, 2019), analyzing the
effects of labour market, oil market and monetary policy shocks respectively. Moreover, we re-
produce the Proxy-SVAR model of Mertens and Ravn (2013), whose aim is to assess the effects
of APITR (Average Personal Income Tax Rate) and ACITR (Average Corporate Income Tax
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Rate) shocks, and we do this by relaxing the zero restrictions that allow them to achieve point
identification.

Our empirical applications show that the introduction of identifying information coming
from heteroskedasticity can generate substantial changes in the results. For example, in the la-
bor market application, it leads to a significantly steeper aggregate labour demand and a supply
that is almost flat. Related to this, the responses of wages and employment to demand shocks
are dramatically revised, they are both less responsive when compared to the case with constant
variances. In the application on oil, the results with heteroskedasticity support Kilian and Mur-
phy’s (2012) assumption that the price elasticity of supply is smaller than 0.0258, which has
been harshly criticized by Baumeister and Hamilton with the homoskedastic model. Moreover,
the world demand for oil becomes much steeper and inventories have an insignificant sensitivity
to the quantity of crude oil produced, while in the standard SVAR this sensitivity is negative and
significant. In the monetary SVAR, a monetary contraction has more recessive and persistent
consequences with heteroskedasticity, and there is a significant drop of hourly earnings after
two years from the shock. Other shocks (e.g., demand and supply) also have different effects
when allowing for heteroskedasticity in the SVAR. In the fiscal policy application, both types
of fiscal contractions have deep negative effects on output once heteroskedasticity is taken into
consideration. Moreover, following a corporate income tax shock, the corporate income tax
base actually decreases. This mechanism, together with the negative effect on output, leads
government debt to rise in response to the unexpected corporate tax increase. On the other
hand, a personal income tax shock raises the tax base and allows a reduction of the government
debt, as one would expect.

The paper is structured as follows: Section 2 describes the structural VAR (SVAR) model
and discusses the identification problem. Section 3 presents the class of sign restricted SVAR
introduced by Baumeister and Hamilton (2015), illustrates the Bayesian algorithm we employ
in order to draw from the posterior of a heteroskedastic version of their model (SVAR-H) and
revisit the empirical results the authors obtain applying their methodology in a series of works.
Section 4 describes the Proxy-SVAR approach, adapts it to account for heteroskedasticity and
re-examines the effects of personal and corporate tax surprises using data from Mertens and
Ravn (2013). Section 4 summarizes and concludes.

2 Empirical Strategy

2.1 SVAR Model and Identification

The joint dynamics of macroeconomic variables is often modeled as a VAR(p) process:

yt = Πxt−1 +ut , (1)

where yt is a n× 1 vector of endogenous variables, xt−1 is the k× 1 (k = np + 1) vector
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[
1,y′t−1, . . . ,y

′
t−p
]′, and Π is a n×k matrix of coefficients. The n×1 vector of prediction errors

ut is assumed to be normally distributed with zero mean and variance Ω, and it is believed to be
a linear combination of structural shocks: ut = A−1

ε t , ε t ∼ N(0,Λ), with Λ = diag[λ1, ...,λn]

and A (or A−1) potentially full with ones on the main diagonal.
Most often, researchers are interested in the propagation of structural innovations, which

are considered the drivers of economic fluctuations. For this reason, policy analysis is usually
carried out considering the structural form of the VAR model. This is obtained premultiplying
both sides of equation (1) by A:

Ayt = Bxt−1 + ε t , (2)

where B = AΠ.
The main difficulty when moving from the reduced form VAR in (1) to the structural repre-

sentation in (2) is that this mapping is not unique, unless more information is introduced in the
model. This problem is known as the identification problem in the SVAR literature and it arises
because the data are only informative about the parameters (Π,Ω), but they cannot distinguish
between alternative structural specifications, (A,B,Λ), that give rise to the same reduced form
model. To see this, note that the following must hold:

Ω = A−1
Λ
(
A−1)′ (3)

Since the reduced from variance Ω is symmetric, (3) provides a system of n(n+1)/2 equa-
tions in which the left hand side can be inferred from the data, but the right hand side contains
n(n−1)+n unknown elements. As a result, (3) does not have a unique solution and more in-
formation has to be introduced in order to obtain an economically meaningful parametrization
of the SVAR (2).

This paper focuses on three main ways of introducing such identifying information in the
model, namely: sign restrictions, external instruments and heteroskedasticity.

The use of sign restrictions consists in considering only the solutions of equation (3) that
satisfy the assumption that certain elements of A−1(or A in the case of Baumaister and Hamilton,
2015, 2018, 2019) have a prespecified sign. These assumptions are usually made on the basis
of widely acceptable theoretic justifications, which explains why this identification strategy has
become one of the most popular in the empirical literature. Such mild assumptions, however, are
often not enough to make the solution of (3) unique. For this reason, inference must be drawn
from a set of equally likely parametrizations (A,B,Λ) with possibly vague interpretations.

External instruments, when available, provide precious information that can be used to ob-
tain identification. The special feature of proxy variables is that they are known to be correlated
with the structural shocks of interest (relevance condition) but uncorrelated with all other shocks
(exogeneity condition).

If one proxy is available for the i-th shock, the parameters of the i-th equation in the SVAR
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(2) can be uniquely determined. However, in practice it is often the case that m > 1 instru-
ments are correlated with m shocks of interest and uncorrelated with all the other n−m. In
that case, the parameters of the m equations in (2) that are associated with the m innovation of
interest are only set identified, in the sense that there exist a set of parametrizations that satisfy
the conditions implied by the external instruments, but all the elements of this set are obser-
vationally equivalent. In order to reduce the set to a collection of economically meaningful
models, researchers often impose additional zero restrictions, as in Mertens and Ravn (2013)
and Lakdawala (2019), or sign restrictions, as in Piffer and Podstawski (2017) and Braun and
Bruggemann (2020).

Identification through heteroskedasticity, on the other hand, is a purely statistical method
to achieve a unique parametrization (A,B,Λ). The strategy exploits the presence of time vari-
ation in the variances of structural innovations ε t , which translates in time variation of the
variance/covariance of the reduced form errors ut .

We will assume for the rest of the paper that these variances evolve as a regime switching
process, where the dates of regime changes are known to the researcher. In addition to this
being often the case in practice, knowing the exact date of regime changes is not necessary for
consistency. Rigobon (2003) and Sims (2020) show that estimates of the structural parameters
are still consistent if the windows of heteroskedasticity are misspecified.

Intuitively, heteroskedasticity adds more equations than free parameters to the system in
(3). If one considers the case with S regimes, the mapping of the reduced form variance Ωs,
s = 1, ...,S, into the structural parameters (A,Λs) becomes:

Ωs = A−1
Λs
(
A−1)′ (4)

which is now a system of S[n(n+1)/2] equations in n(n−1)+Sn unknowns. Results in Lanne
et al. (2010) and Lutkepohl and Wozniak (2020) prove that, as long as there exist two regimes
s1,s2 ∈ {1, ...,S} for which λi,s1/λ j,s1 6= λi,s2/λ j,s2 , ∀ j 6= i and ∀i ∈ {1, ...,n}, then the parameters
of the structural model (2) are uniquely identified up to a permutation of the columns of A−1.
In other words, if changes in the variance of shocks are not proportional across all regimes,
heteroskedasticity allows to achieve point identification but it is silent about the economic nature
of ε t , because any ordering of the shocks is equally likely.

The main assumption behind identification through heteroskedasticity is that the impact of
shocks on economic variables, defined by A−1, is time invariant. Although this assumption
is not completely innocuous, it is also present in the other identification strategies discussed
above, therefore it cannot be considered a discriminator between the use of sign restrictions,
proxy variables or heteroskedasticity for identification.

In this paper we argue that there is a definite gain to be obtained by introducing heteroske-
daticity in SVAR identified via sign restrictions or external instruments. There is an obvious
"reduced form" gain which will come from the fact that a model with time varying volatility is
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in most cases a better representation of the data, which reduces the risk of model misspecifi-
cation and generally improves the efficiency of the estimators. And there is also a "structural
form" gain insofar modelling the variances as time varying allows to extract more identifying
information from the data, sharpening the identification of the structural parameters.

3 Sign Restrictions and Heteroskedasticity

The traditional way of implementing sign restrictions is to estimate reduced form parameters
and then to consider a uniform prior over the space of orthogonal matrices Q that map the
reduced form model into a structural model that satisfies the desired sign restrictions on A−1.
The idea is to explore the set of all the structural parametrizations compatible with the estimated
(Π,Ω) and with sign restrictions, by drawing rotations of the innovations ε t associated with
different matrices Q.1 Note, in fact, that (3) continues to hold if we rotate the structural shocks
using an orthogonal matrix (QQ′ = I):

Ω = A−1
Λ

1/2QQ′
(

Λ
1/2
)′(

A−1)′ (5)

In an important paper, Baumeister and Hamilton (2015) point out some relevant limitations
of this approach. Their main argument is that the prior over the admissible SVAR parametriza-
tions is never updated by the data, and apparently uninformative priors for the rotation matrix
Q can sometimes translate into very informative and implausible priors for objects of interest,
such as Impulse-Response Functions (IRF).

Their proposed method to overcome these limitations follows from the idea of Sims and
Zha (1998) of estimating the structural form in (2) directly. Baumeister and Hamilton (2015)
suggest to introduce sign restrictions in this setting by placing truncated stundent-t priors on
specific elements of A.

Although it is not an essential aspect of their suggested method, Baumeister and Hamilton’s
preference for considering sign restrictions on the contemporaneous relations embedded in A,
rather than on the impact matrix A−1, comes from the fact that the former type of constraints
are more easily elicited on the basis of economic theory.

For example, in order to identify the simultaneous equations describing demand and supply
in SVAR models, the researcher can impose that price and quantity are negatively related in the
former and positively related related in the latter.

Furthermore, it must be noted that, contrary to traditional sign restricted SVARs, where the
structural parameters are only set identified, in the class of models proposed by Baumeister and
Hamilton (2015), the posterior distribution of the structural parameters provides point identifi-
cation, because the informative priors introduced on the elements of A revise the shape of the
flat regions of the likelihood.

1Rubio-Ramirez, Waggoner and Zha (2010) develop an efficient algorithm to perform this task.
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In this section, we adopt Baumeister and Hamilton’s approach and show how heteroskedas-
ticity can be introduced in the SVAR to make the data more informative about the structural
parameters. In this way, as long as the conditions stated in Lanne et al. (2010) and Luktepohl
and Wozniak (2020) are satisfied, there will be no regions of the parameters space in which the
likelihood is flat.

Subsection 3.1 describes the general Bayesian algorithm we use to draw from the posterior
distribution of the SVAR-H model, while in subsections 3.2, 3.3 and 3.4 we revisit the empirical
results in Baumaister and Hamilton (2015, 2018, 2019) through the lenses of our heteroskedastic
model.

3.1 SVAR-H

In this section we borrow notation from Luktepohl and Wozniak (2020) and write λi,s = λi,1ωi,s,
s = 1, ...,S, where it is understood that ωi,1 = 1 for every i ∈ {1, ...,n}. Although this specifi-
cation does not change any property of the model, it provides an immediate way to check that
enough heterogeneity is present in the changes of variance regimes.

If we assume that the data are generated by a SVAR(p) model with heteroskedastic structural
innovations, ε t ∼ N(0,Λs), s = 1, ...,S, the likelihood is then:

p(y1:T |A,B,Λ1:S) = (2π)−
T n/2 |det(A)|T

(
n

∏
i=1

λ
−T/2
i,1

)(
n

∏
i=1

S

∏
s=1

ω
−Ts/2
i,s

)
×

exp

{
−1

2

n

∑
i=1

λ
−1
i,1

[
S

∑
s=1

ω
−1
i,s

(
Aiy(s)−Bix(s)

)(
Aiy(s)−Bix(s)

)′]}
(6)

where T is the time series size of the sample and Ts is the length of regime s. The matrices
y(s) and x(s) collect the values of yt and xt−1 observed during regime s and have size n×Ts and
k×Ts respectively, while Ai and Bi denote the i-th row of A and B.

If we assume student-t priors for the nα free elements in A, α , conditionally normal priors
with mean µ i and variance V i on the vectors of coefficients Bi, independent inverse-gamma
priors with di,1/2 degrees of freedom and scale parameter ζi,1/2 for the variances λi,1, inverse-
gamma priors with di,s/2 degrees of freedom and scale parameter ζi,s/2 for the ratios ωi,s, for
s = 2, ...,S, it is shown in the appendix that the conditional posterior distribution of Bi is normal
with moments:

V̄ i =

[
V−1

i +λ
−1
i,1

S

∑
s=1

ω
−1
i,s x(s)

(
x(s)
)′]−1

µ̄
′
i =

[
µ
′
iV
−1
i +λ

−1
i,1

S

∑
s=1

ω
−1
i,s Aiy(s)

(
x(s)
)′]

V̄ i (7)

The variances λi,1, conditional on all other parameters, have inverse-gamma posteriors with
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degrees of freedom and scale parameters:

d̄i,1

2
=

di,1 +T
2

ζ̄i,1

2
=

ζi,1 +∑
S
s=1 ω

−1
i,s

(
Aiy(s)−Bix(s)

)(
Aiy(s)−Bix(s)

)′
2

(8)

The ratios ωi,s have inverse-gamma conditional posteriors with degrees of freedom and scale
parameters:

d̄i,s

2
=

di,s +Ts

2

ζ̄i,s

2
=

ζi,s +λ
−1
i,1

(
Aiy(s)−Bix(s)

)(
Aiy(s)−Bix(s)

)′
2

(9)

Finally, the vector of free elements of A, α , has a non standard posterior distribution whose
density is:

p(α|Y ,B,Λ1:S)∝ p(α) |det(A)|T exp

{
−1

2

n

∑
i=1

λ
−1
i,1

[
S

∑
s=1

ω
−1
i,s

(
Aiy(s)−Bix(s)

)(
Aiy(s)−Bix(s)

)′]}
(10)

where p(α) is the product of the univariate student-t densities placed on the single free elements
in A.

Given these conditional densities, draws from the joint posterior of the parameters of the
SVAR-H model can be obtained implementing a Markov Chain Monte Carlo algorithm that
cycles through the following steps for m = 1, ...,M, where M is a sufficiently large number of
iterations2:

1. Draw from p
(

Λs|Y ,A(m−1),B(m−1)
)

for s = 1, ...,S, which is accomplished by:

(a) drawing from p
(

λi,1|Y ,Ai
(m−1),Bi

(m−1),ω
(m−1)
i,2:S

)
for i = 1, ...,n;

(b) drawing from p
(

ωi,s|Y ,Ai
(m−1),Bi

(m−1),λ
(m)
i,1

)
for i = 1, ...,n and for s = 2, ...,S;

2. Draw from an approximation of p
(

α|Y ,B(m−1),Λ
(m)
1:S

)
using a Random Walk Metropolis-

Hastings algorithm, which:

(a) draws a candidate α? = α(m−1)+ ξ ν , where ν ∼ t (2) and has dimension nα × 1,
while ξ is a tuning parameter that guarantees an acceptance rate between 30% and

2In our empirical applications M = 2,000,000 with a burn-in of M/2
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40%3;

(b) compute ϑ = min

{
p
(

α?|Y ,B(m−1),Λ
(m)
1:S

)
p
(

α(m−1)|Y ,B(m−1),Λ
(m)
1:S

) ,1
}

, and set α(m) = α? with probability ϑ

and α(m) = α(m−1) with probability (1−ϑ) ;

3. Draw from p
(

Bi|Y ,A(m)
i ,λ

(m)
i,1:S

)
, for i = 1, ...,n.

The main difference between our algorithm and the one implemented by Baumeister and Hamil-
ton (2015, 2018, 2019) is that the presence of heteroskedasticity does not allow us to have natu-
ral conjugate priors, and, hence, forces us to resort to MCMC methods in the place of the plain
Monte Carlo sampling used in their applications. As a result, the prior distributions we con-
sider in the next subsections will be close but not identical to the one assigned in the respective
original papers.

To maximize the reliability of our results, all the comparisons we make throughout the paper
are based on the homoskedastic version of our specification, obtained setting ωi,s = 1 for all i

and s. In this way, the differences between the estimated homoskedastic and heteroskedastic
models can only be driven by information conveyed by the data, and cannot be affected by
differences in parameters priors.

3.2 Labour Market Shocks

The first empirical example in which Baumeister and Hamilton (2015) illustrate their proposed
method is a bivariate SVAR describing aggregate labour demand and supply in the U.S.

The model takes the form in (2) with:

A =

[
−β d 1
−αs 1

]
(11)

and yt = [∆wt ,∆nt ], where wt and nt are 100 times the logarithm of the wage level and employ-
ment level, while ∆ denotes the quarterly difference. 4

The free elements of A, β dand αs, are interpreted as the short run demand and supply elas-
ticity. The authors place on β d a student-t prior with 3 degrees of freedom, location parameter
cβ =−0.6 and scale parameter σβ = 0.6, and they set for αs the same type of prior with cα = 0.6
and σα = 0.6. Furthermore, in accordance with any plausible theoretical model, Baumeister and
Hamilton truncate the priors for these elasticities to have respectively only negative and positive
support.

3A more efficient algorithm can be obtained if proposals are generated as α? = α(m−1)+ ξ (P̂)ν , where P̂ is
the Cholesky factor of the Hessian matrix of the posterior distribution obtained in the homoskedastic case and
evaluated at the parameter point that maximizes the density.

4Wage level is measured as the seasonally adjusted real compensation per hour and employment level is the
seasonally adjusted number of people on nonfarm payrolls.
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In our specification of the model, we set the exact same prior on the free elements of A and
use an implied Minnesota type conditional prior for the structural parameters Bi: µ i = AiΠ0,
with Π0 an n× k matrix of zeros5.

In addition, we follow the original paper and introduce the non-dogmatic restriction that the
long run effect of a labour demand shock on employment is zero. We do this by adding an
independent normal prior for the sum of the coefficients in B2 associated with lagged values of
∆wt

6.
The prior distributions for the variances λi,1 are inverse-gamma with degrees of freedom

di,1 = 2 and scale ζi,1 =
(

di,1ÂΣ(1)Â
′)

i,i
, where Â is the matrix that maximizes Baumeister and

Hamilton’s posterior and Σ is the variance/covariance matrix of AR(1) residuals computed for
the first regime.

Finally, the variance ratios ωi,s, s = 2, ...,S, have also inverse-gamma prior with di,s = 2 and

scale ζi,s = di,s

(
ÂΣ(s)Â′

)
i,i(

ÂΣ(1)Â′
)

i,i

.

For this application, we use the same data analyzed in the original paper, which are quarterly
and cover the period 1970:Q1-2014:Q2. In the choice of regimes, we follow Brunnermeier et
al. (2021) and identify December 1989 as the endpoint of a first sub-period, and we consider
2007:Q4 as the prelude of the “Great Recession” period.

The contribution provided by heteroskedasticity to the identification of the structural param-
eters β dand αs is clear from Figure 1. The histograms show the marginal posterior distributions
of the demand elasticity (left panel) and the supply elasticity (right panel) obtained from the
homoskedastic SVAR (BH) and from the SVAR-H model. The continuous red lines depict the
prior distributions of the two parameters.

The figure shows a considerable difference between the results of the two models, SVAR-
H portrays a significantly steeper aggregate labour demand and a supply that is almost flat.
Despite their conclusions differ substantially, it is worth emphasizing again that the two models
are identical in all features but the time variation in the variances of shocks.

The divergent implications of the two specifications are also noticeable from the cumulated
IRFs depicted in Figure 2. Although the effects associated with a unit supply shock are quali-
tatively similar, the responses of wt and nt to demand shocks are dramatically revised with the
introduction of heteroskedasticity. Both the wage level and employment are less responsive to
demand shocks when compared to the case with constant variances.

5The variance V i is a diagonal k×k matrix with the top left element equal to δ0, and j-th main diagonal element

equal to
δ1δ2(1 j 6=i)

lδ3
σi
σ j

, where l is the lag of the associated regressor, σi and σ j are the residual variances of an AR(1)
estimated via OLS for the i-th and j-th variable of the system. In our application, δ0=100, δ1 = 0.2, δ2=1, δ3 = 2.

6This prior is centered at −αsand has variance R = 0.1σi.
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Figure 1: Prior vs Posteriors.

Notes: BH (blue histogram) denotes the homoskedastic SVAR with independent priors,
SVAR-H (red histogram) indicates the heteroskedastic model. The red line is the prior
density, which is identical in both specifications.

Figure 2: Cumulated IRFs.

Notes: BH (blue) denotes the homoskedastic SVAR with independent priors, SVAR-H (red)
indicates the heteroskedastic model. Solid lines indicate median responses while dashed
lines represent 68% credible bands.
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3.3 Oil Market Shocks

The second application in which we compare SVAR-H with its homoskedastic version is taken
from Baumeister and Hamilton (2018) and studies the effects of different types of oil shocks on
the macroeconomy.

The model is a SVAR(12) with endogenous variables yt = [qt ,yt , pt ,∆ it ]
′, where qt is the

monthly growth rate of crude oil production, yt is a measure of real global economic activity 7,
pt is the logarithmic difference between the acquisition cost of crude oil and the U.S. CPI, and
∆it is the monthly change in OECD oil inventories. Baumeister and Hamilton (2018) also refine
the model to take into account the fact that ∆it contains measurement errors and represents only
a share, χ ∈ [0,1], of the global inventories 8.

The authors argue that the SVAR with contemporaneous relations represented by:

Ā =


1 0 −αqp 0
0 1 −αyp 0
1 −βqy −βqp −χ−1

−Γ1 0 −Γ3 1

 (12)

appropriately describes the interactions between observable variables. However, because of the
presence of measurement errors, such model is driven by innovations that are contemporane-
ously correlated and needs to be premultiplied by the matrix:

Γ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 ρ 1

 (13)

in order to represent a system of simultaneous equations with orthogonal shocks.
In this application, the contemporaneous matrix in a SVAR representation of the type (2) is

therefore A = ΓĀ, and its prior distribution is the product of the priors for the individual free
elements in Ā and the prior for ρ .

On the elasticity of oil supply, αqp, the authors place a stundent-t prior with 3 degrees of
freedom, location parameter cα

qp = 0.1 and scale σα
qp = 0.2, truncated to be positive. On the price

elasticity and the income elasticity of oil demand, βqp and βqy, on the other hand, they consider
a stundent-t prior with the same degrees of freedom and scale, but locations at cβ

qp =−0.1 and
cβ

qp = 0.7, and truncated to be respectively negative and positive. For αyp, that measures the
sensitiveness of global economic activity to the price of oil, they set a truncated stundent-t prior
with three degrees of freedom, scale σα

yp = 0.1 and mode cα
qp =−0.05.

The parameter χ represents the weight of OECD countries in the total world inventories,

7The measure was proposed by Kilian and Murphy (2012) and represents the cost of international shipping
deflated by U.S. CPI.

8See section III and Appendix F of Baumeister and Hamilton (2018) for details.
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and it has a Beta prior distribution with parameters αχ = 15 and βχ = 10, to reflect the fact that
the OECD group contributes for about 60% of the global oil consumption.

The priors for the remaining free elements of Ā, Γ1 and Γ2, are also t-distributed with three
degrees of freedom, scale equal to 0.5 and location at 0.

The parameter ρ determines the importance of measurement errors in ∆ it , and it is dis-
tributed a priori as a Beta stochastic variable, with parameters αρ = 3 and βρ = 9, multiplied
by χ .

In addition, Baumeister and Hamilton consider an asymmetric t-distribution as prior for the
determinant of the matrix Ā and a symmetric t-distribution as prior for h2 =

det(Ā)+αypβqy
det(Ā)

9 to
reflect the belief that the effect of a positive global activity shock should be beneficial for the
world economy.

The prior for the lagged coefficients, B, is normal with Minnesota-type variances10 and zero
means, with the exception of the coefficients associated with the first lag of prices in the supply
and demand equations, which have means 0.1 and -0.1 respectively.

Finally, we set inverse gamma priors for the variances λi,1 and the ratios ωi,s, with two
degrees of freedom and scale parameters computed as described in section 3.2.

In our analysis, we use the extended version of Kilian’s (2009) dataset compiled by Baumeis-
ter and Hamilton (2018). Observations are monthly and run from 1958:M1 to 2016:M12, where
the pre-sample 1958:M1-1975:M1 is downweighted with a weight ϖ = 0.5.

We identify the first change in variances with the end of the pre-sample, and then follow
Brunnermeier et al. (2021) for the definition of the remaining regimes 11.

As in the previous application, heteroskedasticity introduces in the model important iden-
tifying information. Figure 3 shows how the posteriors of the structural parameters in A differ
when the variances of shocks are allowed to change across regimes.

In contrast with the homoskedastic model, the SVAR-H results support Kilian and Murphy’s
(2012) assumption that the price elasticity of supply is smaller than 0.0258, which has been
harshly criticized by Baumeister and Hamilton. The world demand for oil is, however, much
steeper in the heteroskedastic specification.

Other important differences apparent from Figure 3 are the contemporaneous coefficients in
the equation describing the dynamics of inventories. According to SVAR-H, inventories have
an insignificant sensitivity to the quantity of crude oil produced, while in the standard SVAR
this sensitivity is negative and significant.

9The former distributions has three degrees of freedom, location c1 = 0.6, scale σ1 = 1.6 and skewness param-
eters λ1 = 2. The latter distribution has three degrees of freedom, location c2 = 0.8 and scale σ2 = 0.2.

10Variances are
δ1δ2(1 j 6=i)

lδ3
σi
σ j

, with δ0=100, δ1 = 0.5, δ2=1, δ3 = 1.
11Regime 2 goes from 1975:M2 to 1979:M9 and it is characterized by the oil crisis and stagflation; regime 3

goes from 1979:M10 to 1982:M12 and defines Volcker’s disinflation; regime 4 goes from 1983:M1 to 1989:M12
and includes the Saving and Loans crisis; regime 5 goes from 1990:M1 to 2007:M12 is defined as the “Great
Moderation”; regime 6 goes from 2008:M1 to 2010:M12 represents the “Great Recession”; regime 7 goes from
2011:M1 to 2016:M12 and covers the recovery from the Great Recession.
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Figure 3: Prior vs Posteriors.

Notes: BH (blue histogram) denotes the homoskedastic SVAR with independent priors,
SVAR-H (red histogram) indicates the heteroskedastic model. The red line is the prior
density, which is identical in both specifications.

Finally, the two models infer different signs for the price elasticity of inventories, which is
positive under SVAR-H and negative under the alternative specification.

The additional information brought in by heteroskedasticity also translates in significantly
different IRFs. Figure 4 plots the responses of the four endogenous variables to oil supply
shocks, global economic activity shocks, oil specific demand shock and inventories demand
shocks, interpreted by Baumeister and Hamilton as speculative surprises.

One important qualitative difference between the two models results is the response of world
economic activity to oil supply shocks: one unit shock that decreases oil production generates
deeper and faster negative effects on global industrial production in the heteroskedastic model.

Moreover, oil specific demand shocks have less significant effects on oil production, eco-
nomic activity and inventories than in the model with time invariant variances.

It is also remarkable the discrepancy in the effects of unit speculative shocks on oil produc-
tion, which are positive in the homoskedastic case, but negative in SVAR-H.

Finally, under the heteroskedastic specification, inventories change less significantly in re-
sponse to shocks of all types with the exception of speculative ones.

In a related paper, Braun (2021) performs a similar empirical application expoiting non-
Gaussianity for identification. It is interesting to note that his results poit towars the same
direction as ours do, although they are based on fairly different modelling assumptions. We
interpret this as further evidence that data contains indeed precious information about structural
parameters that is overlooked by homoskedastic Gaussian specifications.
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Figure 4: IRFs.

Notes: BH (blue) denotes the homoskedastic SVAR with independent priors, SVAR-H (red) indicates the het-
eroskedastic model. Solid lines indicate median responses while dashed lines represent 68% credible bands.
Given the refinement applied to account for the presence of measurement errors in inventories, the response at
horizon h of yt to the structural shocks εt are computed as: IRFh =

(
Γh)

1:n,1:n Ā−1
Ξ, where Γ is the companion

form of the reduced form lagged coefficients and Ξ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 −χ−1

0 0 0 χ 1

. See section III in Baumeister

and Hamilton (2018) for details.

3.4 Monetary Policy Shocks

The last example on which we focus is the quarterly macroeconomic model of Baumeister and
Hamilton (2019).

The baseline model is a SVAR(4) with a 3×1 vector of endogenous variables yt = [yt ,πt ,rt ]
′,

where yt is the output gap 12, πt is inflation 13 and rt is the fed fund rate observed on average dur-
ing the quarter. The system dynamics is assumed to be driven by supply, demand and monetary
policy shocks.

The three equations of the model are interpreted as a Phillips Curve, an aggregate demand
function and a Taylor Rule, in which the contemporaneous relations are described by the matrix:

A =

 1 −αs 0
1 −β d −γd

−(1−ρ)Γy −(1−ρ)Γπ 1

 (14)

In our analysis, we adopt for the free elements in A the same prior distributions assumed in
the original paper. That is, we use for Γy and Γπ student-t priors with three degrees of freedom,
scale parameters σ

y
Γ
= σπ

Γ
= 0.4 , and locations at cy

Γ
= 0.5 and cπ

Γ
= 1.5, both truncated to be

positive. The parameter ρ measures to what extent the central bank prefers smooth changes in
the policy rate and it has a Beta prior distribution with mean 0.5 and standard deviation 0.2.

The priors for β d and γd are both student-t distributions with three degrees of freedom,

12It is computed as 100log(GDP?
t /GDPt), where GDP?

t and GDPt are respectively potential and actual GDP mea-
sured the Congressional Budget Office.

13It is computed as 100log(PCEt/PCEt−4), where PCE is the PCE deflator.
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scale parameter 0.4, and modes at cβ = 0.75 and cγ =−1, but only the latter is truncated to be
negative.

Finally, αs is also t-distributed a priori with three degrees of freedom, scale σα = 0.4 and
location parameter cα = 2.

Additionally, we follow Baumeister and Hamilton and set asymmetric student-t priors for
the combinations of parameter h1 = β d + γd(1−ρ)Γπ and h2 = αsγd

αs−β d
14. The role of these

asymmetric priors is to put more mass on parameters values that imply negative impacts of
supply shock on the inflation rate, and of monetary policy shock on economic activity.

On the lagged coeffiecients B, we set a normal distribution that implies a stationary version
of the Minnesota prior for the reduced form parameters Π. In particular, we set the prior mean
of Bi, conditional on Ai, to be µ ′i = AiΠ0, where Π0 is 0.75 times an identity matrix, while the
variances are computed as in footnote 9.

Finally, the priors for λi,1 and ωi,s are inverse gammas with two degrees of freedom and
scale parameters calculated as in the previous applications.

To update these priors, we use the same dataset analyzed by Baumeister and Hamilton
(2019) and extend it to cover the period 1971:Q1-2019:Q4. As in the previous sections, we
follow Brunnermeier et al. (2021) to determine the endpoints of variance regimes, and identify
regimes changes in 1979:Q3, 1989:Q4, 2007:Q4 and 2019:Q4.

Figure 5 compares the posteriors obtained for the structural parameters in A under the
SVAR-H specification and the homoskedastic alternative.

Most of the distributions are significantly affected by the introduction of heteroskedasticity.
In most cases the posteriors are moved further away from the prior, but in the cases of β d and
Γy they are actually closer to the prior distribution. It is worth noting that this does not mean
that heteroskedasticity adds little information, but, more generally, it means that the information
brought in by the changes in variances is consistent with the prior specified.

The distribution that is revised more heavily is the one for the supply elasticity, which re-
flects a much steeper aggregate supply under SVAR-H.

The sign of the Phillips Curve coefficient β d is reversed by both specifications with re-
spect to the prior, but the magnitude is smaller in the heteroskedastic case. We also notice
that the uncertainty about the Phillips Curve parameters is made lower by the introduction of
heteroskedasticity.

In a more realistic version of the baseline model, Baumaister and Hamilton augment the
three-variate system with the spread between the yield on Baa corporate bonds and the 10-year
Treasury yield, the growth rate in commodity prices, and hourly wages15.

The resulting additional parameters in the augmented contemporaneous matrix, A∗, are
given student-t priors with three degrees of freedom, scale 1 and location at 0. It is also added

14These distributions have three degrees of freedom, scales σh1 = 1 and σh2 = 0.5, locations at ch1 =−0.1 and
ch2 =−0.3, and skewness parameters λh1 =−4 and λh1 =−2.

15The growth rate in commodity prices is computed as 100 times the yearly log-difference in the CRB commod-
ity price index. Hourly wages are the average hourly earnings of production and nonsupervisory employees.
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Figure 5: Prior vs Posteriors.

Notes: BH (blue histogram) denotes the homoskedastic SVAR with independent priors,
SVAR-H (red histogram) indicates the heteroskedastic model. The red line is the prior
density, which is identical in both specifications.

an independent asymmetric t prior on each of the elements of (A∗)−1 that determine the impact
response of the six variables to a monetary policy shock. These priors are such that more prob-
ability mass is assigned to combinations of structural parameters that imply an increase of the
fed fund rate and the spread in response to a monetary policy shock, and a decrease in all other
variables.

Figure 6 shows the responses of yt , πt , and rt to supply, demand and monetary policy shocks
implied by the enlarged SVAR.

The responses of the three variables to supply and demand shocks differ significantly be-
tween the homoskedastic and the heteroskedastic specifications. A unit supply shocks that
decreases output produces more prolonged disinflationary effects in the SVAR-H, while the re-
sponse of interest rates are not significant in the short run and becomes negative in the longer
period.

Demand shocks, on the other hand, have persistent positive effects on the fed funds rate and
inflation in the heteroskedastic model, while they have short-lived impacts on the fed fund rate
and negative effects on inflation under the alternative specification.

Figure 7 focuses on the response of all the six variables to a unit monetary policy shock.
A monetary contraction has more recessive and persistent consequences according to SVAR-

H, while the effects on the yields spread are qualitatively similar for the two specifications.
A price puzzle is present in the response of the broad measure of prices growth, but com-

modity inflation drops on impact for both models.
An important difference is finally indicated by the bottom-right panel of the figure. While

the homoskedastic model does not detect any relevant response of wages to monetary contrac-
tions, the SVAR-H reveals a significant drop of hourly earnings after two years from the shock.
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Figure 6: IRFs.

Notes: BH (blue) denotes the homoskedastic SVAR with independent priors, SVAR-H (red)
indicates the heteroskedastic model. Solid lines indicate median responses while dashed
lines represent 68% credible bands.

Figure 7: IRFs to monetary policy shocks.

Notes: BH (blue) denotes the homoskedastic SVAR with independent priors, SVAR-H (red)
indicates the heteroskedastic model. Solid lines indicate median responses while dashed
lines represent 68% credible bands.
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4 Proxy-SVAR and Heteroskedasticity

A Proxy-SVAR is a Structural VAR identified by means of external instruments that are cor-
related with the shocks of interest but uncorrelated with all other shocks. That is, given the
model in equation (2), a r×1 vector of variables, zt , is available, and evolves according to the
following process:

zt = Γc +Γxxt−1 +Γz,1zt−1 + . . .+Γz,pzt−p +Φεt + et (15)

where Γc is a r× 1 vector of intercepts, Γx has dimension r× k, and Γz,l , l = 1, ..., p, are r× r

matrices of lagged coefficients. The matrix Φ links the external instruments to the identified
structural shocks of the SVAR and can be partitioned as Φ =

[
Φr 0n−r

]
, in which Φr is a

full rank r×r matrix and 0n−r is a r×(n− r) matrix of zeros. This partition makes clear why the
external instruments are able to distinguish the first r shocks from all the remaining innovations.
Finally, et is a r×1 i.i.d. vector of measurement errors that are normally distributed with mean
zero and variance Σe, and independent from the structural shocks εt .

In most practical cases, and in our application in section 4.2, instruments are such that Γc,
Γx and Γz,l are all zeros, therefore equation (15) simplifies to: zt = Φε t + et .

The Proxy-SVAR can then be written compactly in reduced form as:[
zt

yt

]
=

ỹt

[
0
Π

]
xt−1

Π̃ xt−1

+

[
Ωe Φ

0 A−1

]
Ã−1

[
et

ε t

]
ε̃t

(16)

where ε̃t is normally distributed with mean zero and diagonal variance Λ̃ =

[
Λe 0
0 Λ

]
, and Ωe

is a potentially full matrix with ones on the main diagonal, such that Σe = ΩeΛeΩ′e.
When r is greater than one, the Proxy-SVAR is only set identified, unless more constraints

are introduced either in Φ or A−1, or in both. Such constraints come often in the form of
zero restrictions or sign restrictions. In the latter case, however, the identified set is only made
smaller, but it is usually not reduced to a single parameter point.

In the next subsections we provide a method to point identify a Proxy-SVAR with r >

1 instruments and r shocks of interest, without imposing dubious restrictions on Φ or A−1.
Following our discussion of heteroskedasticity as a complementary identification strategy, we
propose to reduce the identified set in Proxy-SVARs taking advantage of the time variation in
variances of structural shocks.

4.1 Proxy-SVAR-H

Extending the reduced form Proxy-SVAR in equation (16) to account for heteroskedasticity is
straightforward, it suffices to consider εt as generated by a normal distribution with mean zero
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and variance Λs, for s = 1, ...,S, where S continues to indicate the number of regimes. Without
loss of generality, we also set the diagonal elements of A−1 to 1 to fix the scale.

The likelihood of the resulting Proxy-SVAR-H is therefore:

p
(

y1:T |Ã−1,Π̃, Λ̃1:S

)
= (2π)−

T n/2
∣∣∣det

(
Ã−1

)∣∣∣−T
(

r

∏
j=1

λ
−T/2
e, j

)(
n

∏
i=1

λ
−T/2

i,1

)(
r+n

∏
i=r+1

S

∏
s=1

ω̃
−Ts/2
i,s

)
×

exp

{
−1

2

[
S

∑
s=1

(
vec
(

ỹ(s)
′

t

)
−
(

In⊗ x(s)
′)

π̃

)′((
Ã−1

Λ̃s

(
Ã−1

)′)
⊗ ITs

)−1(
vec
(

ỹ(s)
′

t

)
−
(

In⊗ x(s)
′)

π̃

)]}
(17)

Where π̃ = vec
(

Π̃

)
.

The parameters in π̃ are reduced form VAR coefficients. Therefore, given an independent
Gaussian prior, N (π̃0,V ), conditional on Ã−1 and Λ̃1:S, the posterior is the familiar normal
distribution with variance and mean:

V̄ =

[
V−1 +

S

∑
s=1

(
Ã⊗ x(s)

′)′(
Λ̃s⊗ ITs

)−1(
Ã⊗ x(s)

′)]−1

π̄ = V̄−1

[
V−1

π̃0 +
S

∑
s=1

(
Ã⊗ x(s)

′)′(
Λ̃s⊗ ITs

)−1
vec
(

ỹ(s)
′

t Ã
′
)]

(18)

Furthermore, conditional on Ã, the equations of the SVAR are independent. Accordingly,
given an inverse gamma prior, IG(di,1,ζi,1), i = 1, ...,r+n, for each element of Λ̃1, the posteri-
ors are conjugate with d̄i,1 = di,1 +T degrees of freedom, and scale parameters:

ζ̄i,1 = ζi,1 +
S

∑
s=1

ω
−1
i,s

[
Ãi

(
y(s)− Π̃x(s)

)(
y(s)− Π̃x(s)

)′
Ã
′

i

]
(19)

Since in many applications we do not have reasons to believe that the measurement error in
proxies is heteroskedastic, we focus on the case in which the first r diagonal elements of Λ̃s are
time invariant, that is, we set ω̃i,s = 1 for i = 1, ...,r and s = 2, ...,S.

As a result, we consider regime-switching variance ratios only for the structural shocks εt .
For given priors, ω̃i,s ∼ IG(di,s,ζi,s), i = r+ 1, ...,r+ n and s = 2, ...,S, the posteriors are then
also inverse gammas with moments:

d̄i,s = di,s +Ts

ζ̄i,s = ζi,s + λ̃
−1
i,1

[
Ãi

(
y(s)− Π̃x(s)

)(
y(s)− Π̃x(s)

)′
Ã
′

i

]
(20)

Finally, the conditional posterior of Ã−1 is not of a standard form because of the term
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∣∣∣det
(

Ã−1
)∣∣∣−T

appearing in the likelihood. Provided a prior for the nα free elements in Ã−1,
p(α), we can thus write its posterior distribution as:

p
(

α|Y ,Π̃, Λ̃1:S

)
∝ p(α)

∣∣∣det
(

Ã−1
)∣∣∣−T

×

exp

{
−1

2

[
S

∑
s=1

(
vec
(

ỹ(s)
′

t

)
−
(

In⊗ x(s)
′)

π̃

)′((
Ã−1

Λ̃s

(
Ã−1

)′)
⊗ ITs

)−1(
vec
(

ỹ(s)
′

t

)
−
(

In⊗ x(s)
′)

π̃

)]}
(21)

and use a Metropolis-Hastings step to approximate it.
The MCMC algorithm we use to draw from the posterior of the Proxy-SVAR-H parameter

can then be summarized as:

1. Draw from p
(

Λ̃s|Y ,
(

Ã−1
)(m−1)

,Π̃
(m−1)

)
for s = 1, ...,S, which is accomplished by:

(a) drawing from p
(

λ̃i,1|Y ,
(

Ã−1
)(m−1)

,Π̃
(m−1)

, ω̃
(m−1)
i,2:S

)
for i = 1, ...,r+n;

(b) drawing from p
(

ω̃i,s|Y ,
(

Ã−1
)(m−1)

,Π̃
(m−1)

, λ̃
(m)
i,1

)
for i = r+1, ...,n and for s =

2, ...,S;

2. Draw from an approximation of p
(

α|Y ,Π̃(m−1)
, Λ̃

(m)
1:S

)
using a Random Walk Metropolis-

Hastings algorithm, which:

(a) draws a candidate α? = α(m−1)+ ξ ν , where ν ∼ t (2) and has dimension nα × 1,
while ξ is a tuning parameter that guarantees an acceptance rate between 30% and
40%;

(b) compute ϑ = min

 p
(

α?|Y ,Π̃(m−1)
,Λ̃

(m)
1:S

)
p
(

α(m−1)|Y ,Π̃(m−1)
,Λ̃

(m)
1:S

) ,1
, and set α(m) = α? with probability

ϑ and α(m) = α(m−1) with probability (1−ϑ) ;

3. Draw from p
(

π̃
(m−1)|Y ,

(
Ã−1

)(m)
, Λ̃

(m)
1:S

)
.

Which is iterated for m = 1, ...,M, where M is a sufficiently large number, discarding the first
M0 draws16.

Notice that, since the coefficients in the first r rows of Π̃ are all zeros and the last n reduced
form errors are independent from the measurement errors, the last step of the sampler can be
performed by focusing only on the last n equations of the augmented VAR.

16In our empirical application M = 2,000,000 and M0 = 1,000,000.
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4.2 Mertens and Ravn (2013)

One of the most important studies exploiting the availability of external instruments in a SVAR
framework is Mertens and Ravn (2013). The authors construct two narrative measures cor-
related with personal income tax (APITR) and corporate income tax (ACITR) shocks for the
U.S.. They then acknowledge the fact that these proxies contain measurement errors and there-
fore rely on a Proxy-SVAR analysis.

This is a typical example of the situation in which r > 1 (r = 2 in this case) instruments are
available to identify r > 1 shocks. As a result, the structural model is only set-identified.

Mertens and Ravn (2013) obtain point identification by imposing that the matrix Φr is lower
triangular, ordering either the APITR or the ACITR instrument first. In other words, the authors
assume that the instrument ordered first only contains information about one shock, while the
other is correlated with both fiscal shocks.

As argued by Giacomini et al. (2020), this additional restriction may be undesirable because
it introduces a significant degree of arbitrariness in the identification scheme. To avoid this
problem, Giacomini et al. (2020) propose to relax the zero restriction and to base inference on
the whole identified set.

Our strategy is instead to substitute the zero restriction with heteroskedasticity, basing in-
ference on a point identified model.

In this section we revisit Mertens and Ravn’s (2013) results through the lenses of a Proxy-
SVAR-H and show that the information brought in by heteroskedasticity can be substantial.

The SVAR in the original paper has 4 lags and a n× 1 vector of endogenous variables,
yt = [t pt , tct ,bpt ,bct ,gt ,yt ,dt ]

′, where t pt and tct are respectively the real personal and corporate
average income tax rate, bpt and bct are the real personal and corporate income tax base per
capita, gt measures government purchases of final goods per capita, yt is the real GDP per
capita, and dt is the real Federal Government debt per capita.

Data are quarterly and cover the period 1951:Q1-2006:Q4. We define a first variance regime
that goes from 1951:Q1 to 1971:Q1 and can be called the “Bretton Woods” regime, and select
1996:Q4 as a further break point separating a period of deficit increase from the subsequent
period of deficit cuts.

The prior we set for the lagged coefficients, Π̃, are Gaussian with an identity matrix as mean
and Minnesota-type variances17. The inverse gamma priors for the diagonal elements of Λ̃1 and
for the variance ratios ωi,s have two degrees of freedom and scale parameters computed as in
section 3.2.

Finally, all the free elements in Ã−1 have independent student-t prior distributions with three
degrees of freedom, scale 0.5 and location at 0.

Figures 8 and 9 depict the responses to one-unit tax shock for both the homoskedastic and
the heteroskedastic version of the Proxy-SVAR. The IRFs in the first figure are generated by

17Variances are
δ1δ2(1 j 6=i)

lδ3
σi
σ j

, with δ0=100, δ1 = 0.5, δ2=1, δ3 = 2.
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Figure 8: IRFs to APTIR shocks.

Notes: Proxy-SVAR (blue) denotes the homoskedastic SVAR with independent priors,
Proxy-SVAR-H (red) indicates the heteroskedastic model. Solid lines indicate median re-
sponses while dashed lines represent 68% credible bands.

a fiscal surprise that rises APITR by 1 percentage point, while the second figure plots the re-
sponses to a 1% unexpected increase in ACITR.

It is clear that heteroskedasticity adds important information in many directions. The Proxy-
SVAR-H model makes evident that both types of fiscal contractions have deep negative effects
on output.

Another important feature highlighted by the heteroskedastic model is that, following a
corporate income tax shock, corporate income tax base actually decreases. This mechanism,
together with the negative effect on output, leads government debt to rise in response to the
unexpected corporate tax increase.

On the other hand, a personal income tax shock raises the tax base and allows a reduction
of the government debt as one would expect.

Finally. government purchases increase after both types of fiscal surprises, but this effect
tends to be reabsorbed within one year from the shock.

5 Conclusions

In this paper we propose to combine heteroskedasticity with sign restrictions and external in-
struments in order to sharpen identification. Introducing regime shifting in the variances of
structural shocks, we allow the data to be informative about which of the structural representa-
tions compatible with sign restrictions or with conditions coming from external instruments is
admissible.

On the one hand, we overcome the limitations of the identification strategies based on sign
restrictions or external instruments, i.e. potentially large identified sets, taking advantage of
the information introduced by heteroskedasticity. On the other hand, we overcome the labeling
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Figure 9: IRFs to ACTIR shocks.

Notes: Proxy-SVAR (blue) denotes the homoskedastic SVAR with independent priors,
Proxy-SVAR-H (red) indicates the heteroskedastic model. Solid lines indicate median re-
sponses while dashed lines represent 68% credible bands.

problem inherent in identification through heteroskedasticity, considering additional identifying
information in the form of sign restrictions or external instruments.

We illustrate the convenience of this hybrid approach by revisiting empirical results pre-
sented by seminal papers that are based on either sign restrictions or proxy variables. In par-
ticular, we reconsider the applications in Baumeister and Hamilton (2015, 2018, 2019), which
analyze the effects of labour market, oil market and monetary policy shocks respectively. More-
over, we reproduce the Proxy-SVAR model in Mertens and Ravn (2013), whose aim is to assess
the effects of Average Personal Income Tax Rate and Average Corporate Income Tax Rate
shocks, and we do this by relaxing the zero restrictions that allows them to achieve point iden-
tification.

In all the empirical applications, allowing for heteroskedasticity does sharpen identification,
and leads to economically relevant changes in the effects of the identified structural shocks.
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